
Modulational instability of beat waves in a transversely magnetized plasma: Ion effects

T. Ferdous, M. R. Amin, and M. Salimullah
Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh

~Received 7 September 1995!

The effect of ion dynamics on the modulational instability of the electrostatic beat wave at the difference
frequency of two incident laser beams in a hot, collisionless, and transversely magnetized plasma has been
studied theoretically. The full Vlasov equation in terms of gyrokinetic variables is employed to obtain the
nonlinear response of ions and electrons. It is found that the growth rate of modulational instability is about
two orders higher when ion motions are included.

PACS number~s!: 52.35.Mw, 52.35.Nx, 52.75.Di

I. INTRODUCTION

Recently there has been a great interest in the generation
of large amplitude electron plasma waves at the beat fre-
quency of two high power laser radiation in a plasma@1–4#.
The most promising application of beat waves is in the
plasma beat wave accelerator~PBWA! @5–9#. Other applica-
tions of beat waves include plasma heating and current drive
@10,11#, plasma diagnostics@12#, etc. Recently, in the case of
particle acceleration, Modenaet al. @13# experimentally ob-
served the acceleration of electrons at the wave-breaking
limit of a nonlinear relativistic electron plasma wave excited
by strong forward Raman scattering induced by a high-
intensity (.531018 W cm22) short-pulse laser. However,
the excitation of the electron plasma wave and the accelera-
tion of electrons can be controlled more efficiently in the
well known plasma beat wave accelerator scheme. Amiranoff
et al. @14# observed appreciable acceleration of electrons in a
recent experiment on the PBWA. Before achieving the pos-
sible acceleration of particles to ultrahigh energy, the longi-
tudinal large amplitude electron plasma wave may couple
parametrically with different plasma modes, and may suffer a
number of strong microinstabilities which may deteriorate
the acceleration process seriously. Amiranoffet al. @14# con-
cluded from their experiment that, in particular, modulational
instability can seriously destroy the excited plasma wave and
stop the acceleration mechanism. Therefore, the study of the
parametric instabilities of beat waves and their possible satu-
ration is of great importance in the PBWA.

It is well known that the coupling of the Langmuir wave
to the ion motion can give rise either to modulational or
decay instabilities@15#. On a slow time scale, ion motion
@16# can play an important role in saturating the large ampli-
tude beat wave. In the present study we retain the ion dy-
namics as well as electron dynamics in the nonlinear re-
sponse, because the time scale of the ion motionvpi

21 ~where
vpi is the ion plasma frequency!, which is very short on the
order of a few picoseconds at the plasma density 1016–1017

cm23, can be less or comparable to the duration of the laser
pulses in the present day experiments@14,17#. Therefore the
role of ions may be important in these experiments. How-
ever, at higher pump strength and for short pulses~less than
an ion period!, instabilities, particularly those which involve
ion motion, can be avoided@9#. To the best knowledge of the

authors, there has been no study of beat wave instabilities
including the ion dynamics.

In the surfatron scheme@18#, a potential modification of
the PBWA, an external transverse static magnetic field is
applied to phase lock the particles with the wave for prevent-
ing the accelerated particles from outrunning the plasma
wave, thereby eliminating the limitation on the maximum
energy gain of the plasma particles. In the presence of an
external magnetic field, a plasma supports a variety of
plasma modes. The plasma wave in the PWBA attains a large
amplitude, and may couple parametrically to these modes,
deteriorating the uniform acceleration of particles to high
energy. Therefore, a detailed investigation of all possible
parametric instabilities of this high amplitude electron
plasma wave in the presence of an external transverse static
magnetic field is of great importance in the context of the
PBWA. In this paper, we have studied, in particular, the four
wave parametric instability, i.e., the modulational instability
of a large amplitude longitudinal beat wave excited at the
beat frequency of two high power electromagnetic waves in
a homogeneous, hot, and transversely magnetized plasma in-
cluding ion dynamics. We consider short-wavelength pertur-
bations which may be present in the laser-produced plasma
because of the temperature or density gradients caused by the
presence of ion/electron plasma waves.

The plan of the paper is as follows. In Sec. II, we study
the response of magnetized ions and electrons of the plasma
by employing the full Vlasov equation in terms of gyroki-
netic variables for the low-frequency mode. In the case of the
plasma beat wave accelerators, the conditionvpe

2 @v ce
2

~wherevpe and vce are, respectively, the electron plasma
frequency and electron cyclotron frequency! is always satis-
fied. We may therefore consider the high-frequency response
of electrons to be unmagnetized. The frequency of the low-
frequency mode is usually less than frequency of the electron
plasma wave excited at the beat frequency of the two inci-
dent laser beams, i.e., the pump waves. The Larmor radii of
electrons and ions corresponding to this low-frequency mode
may be larger than or comparable to the wavelengths of these
waves. Hence we employ the kinetic equation for the non-
linear response of electrons and ions in the plasma. In Sec.
III, the growth rate of the four wave decay process, i.e., the
modulational instability, has been obtained. In this case the
phase velocity of the low-frequency-driven mode is consid-
ered to be equal to the group velocity of the beat wave. A
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numerical estimate of our results is given in Sec. IV. Finally,
a brief discussion is presented in Sec. V.

II. NONLINEAR RESPONSE OF ELECTRONS AND IONS

We consider the propagation of two colinear high-
amplitude upper-hybrid electromagnetic waves (v18 ,k18) and
(v28 ,k28) in a transversely magnetized (Bsi ẑ), hot, homoge-
neous, and collisionless plasma:

E1,28 5E1,29 exp@2 i ~v1,28 t2k1,28 x!#, ~1!

where

k1,28 5
v1,28

c F12
vpe
2

v1,282
v1,282 2vpe

2

v1,282 2vpe
2 2vce

2 G1/2,
vpe5S 4pe2n0

0

me
D 1/2, ~2!

vce5
eBs
mec

.

Here 2e, me , n0
0, and c are the electronic charge, mass,

unperturbed equilibrium electron density, and velocity of
light in a vacuum, respectively. On account of the nonlinear
interaction of the incident electromagnetic waves in the
plasma, a large-amplitude longitudinal electrostatic electron
plasma wave (v0 ,k0 ;v05v182v28 , k05k182k28) is gener-
ated at the difference frequency:

E0~v0 ,k0!52 ik0f0~v0 ,k0!

52 x̂ik0f0exp@2 i ~v0t2k0x!#, ~3!

where f0 is the electrostatic potential of the beat wave
(v0 ,k0) which satisfies the Bohm-Gross dispersion relation
for the magnetized plasma,

v0
25vpe

2 1vce
2 13k0

2v th,e
2 /2, ~4!

v th,e5(2Te /me)
1/2 is the thermal speed of electrons, and

Te is the temperature of the plasma electrons measured in
units of the Boltzmann constant.

Now we consider that this longitudinal electron plasma
wave will interact with a short-wavelength low-frequency
electrostatic density perturbation associated with a plasma
mode (v,k), and generate two high-frequency sideband
modes (v1,25v7v0 , k1,25k7k0). The waves (v,k),
(v1 ,k1), and (v2 ,k2) will grow at the expense of the energy
from the pump wave (v0 ,k0). For the hot magnetized
plasma, the Larmor radii of electrons and ions may be larger
than any of the wavelengths of the waves involved, i.e.,
k0re , kre , k1re , k2re , k0r i , kr i , k1r i , and k2r i>1,
wherere5v' /vce andr i5v' /vci . The symbol' denotes
quantities perpendicular to the external magnetic field.
Hence the fluid model of plasma breaks down, and one must

solve the full Vlasov equation for the nonlinear response of
electrons and ions in the plasma@19#.

A. Response of ions

We study the response of ions to the four-wave decay
process in the presence of an external static magnetic field by
the nonlinear Vlasov equation expressed in terms of the
guiding center coordinatesxg , magnetic momentm, and the
polar angleu of perpendicular velocity and parallel momen-
tum pi :

] f i
T

]t
1 ẋg•

] f i
T

]xg
1ṁ

] f i
T

]m
1 u̇

] f i
T

]u
1 ṗi

] f i
T

]pi
50, ~5!

where

xg5x1r isinu,

yg5y2r icosu, ~6!

zg5z.

vci5eBs /mic, m5miy'
2 /2vci , the superscriptT refers to

the total quantity, and the symboli denotes quantities paral-
lel to the external magnetic field; the dot over a quantity
denotes derivative with respect to time. Using equations of
motion, we can easily deduce

ṁ5
e

vci
E'
T
•y'5

]H

]u
, ~7!

u̇52
]H

]m
52Fvci1

e

miy'

~Ex
Tsinu2Ey

Tcosu!G , ~8!

ẋg5yi1
e

mivci
2 E'

T3vci , ~9!

where

H5mvci1
pi
2

2mi
1efT ~10!

is the Hamiltonian, and

fT5f0~v0 ,k0!1f~v,k!1f1~v1 ,k1!1f2~v2 ,k2! ~11!

is the total electrostatic potential in the system. Since
(m,u), (xg ,yg), and (pi ,z) form the canonical set of vari-
ables, Eq.~5! follows directly from the continuity equation
of ion density in the six dimensional space of the resulting
variables@19#.

In the presence of the electrostatic potentials of the pump
and the decay waves, the total distribution function of ions in
Eq. ~5! may be decomposed as

f i
T5 f 0i

0 1 f 0i~v0 ,k0!1 f i~v,k!1 f 1i~v1 ,k1!1 f 2i~v2 ,k2!,
~12!
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where the space and time variations are implied, and the
equilibrium distribution functionf 0i

0 is taken to be Maxwell-
ian at the temperatureTi :

f 0i
0 5n0

0S mi

2pTi
D 3/2expS 2

miy
2

2Ti
D . ~13!

f 0i , f 1i , and f 2i are the high-frequency response~at the
pump and sideband frequencies!, and f i is the low-frequency
response. Using the identity

exp@2 i ~vt2k•x!#[exp@2 i ~vt2k•xg!#

3(
n

exp@2 in~u2d!#Jn~k'r!,

~14!

whereJn is the Bessel function of ordern and the summation
overn runs from2` to 1`, we can express

ET52 ik0f0exp@2 i ~v0t2k0xg!#(
n

exp~2 inu!Jn
02 ikf exp@2 i ~vt2k•xg!#(

n
exp@2 in~u2d!#Jn

2 ik1f1 exp@2 i ~v1t2k1•xg!#(
n

exp@2 in~u2d1!#Jn
1

2 ik2f2 exp@2 i ~v2t2k2•xg!#(
n

exp@2 in~u2d2!#Jn
2, ~15!

f i
T5 f 0i

0 1exp@2 i ~v0t2k0xg!#(
n

exp~2 inu! f ni
01exp@2 i ~vt2k•xg!#(

n
exp@2 in~u2d!# f ni

1exp@2 i ~v1t2k1•xg!#(
n

exp@2 in~u2d1!# f ni
11exp@2 i ~v2t2k2•xg!#(

n
exp@2 in~u2d2!# f ni

2 . ~16!

In Eq. ~15!, f ’s are the amplitudes of the electrostatic potentials of the waves,Jn5Jn(k'r i), Jn
05Jn(k0r i),

Jn
15Jn(k1'r i), andJn

25Jn(k2'r i), whered, d1 , andd2 are the angles between thex axis andk' , k1' , andk2' , respec-
tively. Using Eqs.~15! and ~16! into Eqs.~7!–~9!, we can write

ṁ52 ief0exp@2 i ~v0t2k0xg!#(
n

n exp~2 inu!Jn
02 ief exp@2 i ~vt2k•xg!#(

n
n exp@2 in~u2d!#Jn

2 ief1exp@2 i ~v1t2k1•xg!#(
n

n exp@2 in~u2d1!#Jn
12 ief2 exp@2 i ~v2t2k2•xg!#(

n
n exp@2 in~u2d2!#Jn

2 ,

~17!

u̇52vci2
ef0k0
miy'

exp@2 i ~v0t2k0xg!#(
n

exp~2 inu!Jn
082

efk'

miy'

exp@2 i ~vt2k•xg!#(
n

exp@2 in~u2d!#Jn8

2
ef1k1'
miy'

exp@2 i ~v1t2k1•xg!#(
n

exp@2 in~u2d1!#Jn
182

ef2k2'
miy'

exp@2 i ~v2t2k2•xg!#(
n

exp@2 in~u2d2!#Jn
28 ,

~18!

ẋg52
ie

mivci
Fk'f sind exp@2 i ~vt2k•xg!#(

n
exp@2 in~u2d!#Jn1k1'f1sind1 exp@2 i ~v1t2k1•xg!#

3(
n

exp@2 in~u2d1!#Jn
11k2'f2sind2 exp@2 i ~v2t2k2•xg!#(

n
exp@2 in~u2d2!#Jn

2G , ~19!
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ẏg5
ie

mivci
Fk0f0 exp@2 i ~v0t2k0xg!#(

n
exp~2 inu!Jn

01k'f cosd exp@2 i ~vt2k•xg!#(
n

exp@2 in~u2d!#Jn

1k1'f1cosd1 exp@2 i ~v1t2k1•xg!#(
n

exp@2 in~u2d1!#Jn
1

1k2'f2cosd2 exp@2 i ~v2t2k2•xg!#(
n

exp@2 in~u2d2!#Jn
2G , ~20!

żg5
pi

mi
, ~21!

where the prime on the Bessel functions denotes a derivative with respect to its argument. Now, since the maximum growing
modes propagate in the plane perpendicular to the external magnetic field@19,20# we takek'@ki . Using Eqs.~15!–~21! in the
Vlasov equation~5!, we obtain the following linear response of ions:

f ni
05

ef0

Ti

nvci

v02nvci
Jn
0f 0i

0 ,

f ni5
ef

Ti

nvci

v2nvci
Jnf 0i

0 ,

f ni
15

ef1

Ti

nvci

v12nvci
Jn
1f 0i

0 , ~22!

f ni
25

ef2

Ti

nvci

v22nvci
Jn
2f 0i

0 .

Using Eq.~22! in Eq. ~5!, we obtain the nonlinear part of the distribution function for the low-frequency mode (v,k) as

f ni
NL5

exp~2 ind!

v2nvci
~c11c2!, ~23!

where

c15(
l

F ek0f0

2miy'

~n2 l !exp@ i ~n2 l !d1#Jl
08 f ~n2 l !i

1 1
ek1'f1

2miy'

~n2 l !exp~ i l d1!Jl
18 f ~n2 l !i

0 2
ef0l

2
exp@ i ~n2 l !d1#Jl

0
] f ~n2 l !i

1

]m

2
ef1l

2
exp~ i l d1!Jl

1
] f ~n2 l !i

0

]m
1
iek0k1'f0 sind1

2mivci
exp@ i ~n2 l !d1#Jl

0f ~n21!i
1 2

iek0k1'f1 sind1
2mivci

exp ~ i l d1!Jl
1f ~n2 l !i

0 G ,
~24!

c25(
l

Fek0f0*

2miy'

~n1 l !exp@ i ~n1 l !d2#Jl
08 f ~n1 l !i

2 2
ek2'f2

2miy'

~ l2n!exp~ i l d2!Jl
28 f ~ l2n!i

0* 1
ef0* l

2
exp@ i ~n1 l !d2#Jl

0
] f ~n1 l !i

2

]m

2
ef2l

2
exp~ i l d2!Jl

2
] f ~ l2n!i

0*

]m
2
iek0k2'f0* sind2

2mivci
exp@ i ~n1 l !d2#Jl

0f ~n1 l !i
2 1

iek0k2'f2sind2
2mivci

exp~ i l d2!Jl
2f ~ l2n!i

0* G , ~25!

where the asterisk denotes the complex conjugate of the quantity involved. We obtain the linear and nonlinear ion density
perturbations associated with low-frequency mode (v,k) from the relation

ni~v,k!52p(
n
E
0

`E
2`

`

f niJny'dy'dy i . ~26!

Thus the linear and nonlinear ion density perturbations at (v,k) are obtained as

ni
L52

x ik
2

4pe
f ~27!

and
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ni
NL5

n0
0e2exp~2 id!

2miTi~v2vci!
~f0f1Xi1f0*f2Yi !, ~28!

where

x i5
2vpi

2

k2y th,i
2 F11

v

kiy th,i
(
n

ZS v2nvci

kiy th,i
D I n~bi !exp~2bi !G , ~29!

Xi5F ik0k1'sind1exp~ id1!v12vci
I 0~b0i !exp~2b0i !2

ik0k1'sind1
v02vci

I 0~b1i !exp~2b1i !2
mivci

2 exp~ id1!

2Ti~v12vci!
$12I 0~b0i !exp~2b0i !%

2
mivci

2

2Ti~v02vci!
$12I 0~b1i !exp~2b1i !%G , ~30!

and

Yi5F ik0k2'sind2 exp~2id2!v02vci
I 2~b2i !exp~2b2i !2

ik0k2'sind2 exp~ id2!

v22vci
I 0~b0i !exp~2b0i !

2
mivci

2exp~ id2!

2Ti~v22vci!
$12I 0~b0i !exp~2b0i !%1

mivci
2exp~2id2!

2Ti~v02vci!
$12I 2~b2i !exp~2b2i !%

1
mivci

2 exp~2id2!

Ti~v02vci!
$11I 1~b0i !exp~2b0i !%G . ~31!

y th,i5(2Ti /mi)
1/2; I 0 , I 1 , and I 2 are the zero, first, and second order modified Bessel functions of the first kind;

b0i5k0
2y th,i

2 /2vci
2.1 for the usual plasma parameters in the beat wave accelerators;b1i5k1

2y th,i
2 /2vci

2.1; and
b2i5k2

2y th,i
2 /2vci

2.1, for the short-wavelength perturbation. In deriving Eq.~28! we have retained only the dominating terms
having (v2vci) in the denominator.

B. Response of electrons

For the low-frequency response of magnetized electrons we use the Vlasov equation in terms of the guiding center
coordinates. Following the same procedure as in the case of the magnetized ions, we find the linear and nonlinear density
perturbations of electrons as

ne
L5

xek
2

4pe
f, ~32!

and

ne
NL5

n0
0e2exp~ id!

2meTe~v2vce!
~f0f1Xe1f0*f2Ye!, ~33!

where

xe5
2vpe

2

k2y th,e
2 F11

v

kiy th,e
(
n

ZS v2nvce

kiy th,e
D I n~be!exp~2be!G , ~34!

Xe5F2
mevce

2 exp~2 id1!

2Te~v12vce!
$12I 0~b0e!exp~2b0e!%2

mevce
2

2Te~v02vce!
$12I 0~b1e!exp~2b1e!%

1
ik0k1'sind1

v02vce
I 0~b1e!exp~2b1e!2

ik0k1'sind1exp~2 id1!

v12vce
I 0~b0e!exp~2b0e!G , ~35!
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Ye5Fmevce
2 exp~22id2!

2Te~v02vce!
$12I 2~b2e!exp~2b2e!%2

mevce
2 exp~2 id2!

2Te~v22vce!
$12I 0~b0e!exp~2b0e!%

1
mevce

2 exp~22id2!

Te~v02vce!
$11I 1~b0e!exp~2b0e!%1

ik0k2'sind2 exp~22id2!

v02vce
I 1~b0e!exp~2b0e!

1
ik0k2'exp~2 id2!

v22vce
I 0~b0e!exp~2b0e!G . ~36!

In the case of the plasma beat wave accelerators, the condi-
tion vpe

2 .vce
2 is always satisfied and we may consider the

high-frequency response of electrons to be unmagnetized.
Taking the high-frequency response of electrons to be un-
magnetized, the solution of the linearized Vlasov equation
for the response at (v0 ,k0) may be written as

f 0
L52

ef0

Te

k0•v

v0
S 11

k0•v

v0
D f 00 , ~37!

where v0.k0•v is assumed. For the high-frequency re-
sponse at (v1 ,k1) and (v2 ,k2) we expressf 1 and f 2 as

f 15 f 1
L1 f 1

NL ,

f 25 f 2
L1 f 2

NL , ~38!

where the linear and nonlinear parts of the distribution func-
tions f 1

L , f 2
L , f 1

NL , and f 2
NL in the limit v1,2.k1,2•v turn out

to be

f 1,252
ef1,2

Te

k1,2•v

v1,2
S 11

k1,2•v

v1,2
D f 00 , ~39!

f 1
NL52

e

2mev1
S 11

k1•v

v1
D ~k0•“v f

Lf0*2k•“v f 0
L*f!,

~40!

f 2
NL5

e

2mev2
S 11

k2•v

v2
D ~k0•“v f

Lf01k•“v f 0
Lf!.

~41!

Integratingf 1
NL and f 2

NL in velocity space, we obtain the fol-
lowing expressions for the nonlinear density fluctuations at
the high-frequency sidebands (v1 ,k1) and (v2 ,k2) for mo-
tion of electrons:

n1e
NL5

e

2mev1
2 @~k0•k1!f0* ne

L2~k•k1!fn0
L* #, ~42!

n2e
NL5

e

2mev2
2 @~k0•k2!f0ne

L1~k•k2!fn0
L* #, ~43!

wherene
L is the linear density perturbation at the low fre-

quency given by Eq.~32!, andn0
L is the linear density fluc-

tuation associated with the pump wave:

n0
L52

ek0
2f0n0

0

mev0
2 . ~44!

Now, substituting Eqs.~27!, ~28!, ~32!, ~33!, ~42!, ~43!, and
~44! in the Poisson’s equation, we obtain the following non-
linear coupled equations:

ef52
4pe

k2
~ne

NL2ni
NL!, ~45!

e1f152
4pe

k1
2 n1e

NL , ~46!

e2f252
4pe

k2
2 n2e

NL , ~47!

where the linear dielectric functionse, e1 , ande2 are given
by

e511xe1x i

511
2vpe

2

k2y th,e
2 F11

v

kiy th,e
(
n

ZS v2nvce

kiy th,e
D I n~be!exp~2be!G

1
2vpi

2

k2y th,i
2 F11

v

kiy th,i
(
n

ZS v2nvci

kiy th,i
D I n~bi !exp~2bi !G ,

~48!

e1511
2vpe

2

k1
2y th,e

2 F11
v1

k1iy th,e
(
n

ZS v12nvce

k1iy th,e
D

3I n~b1e!exp~2b1e!G , ~49!

e2511
2vpe

2

k2
2y th,e

2 F11
v2

k2in th,e
(
n

ZS v22nvce

k2iy th,e
D

3I n~b2e!exp~2b2e!G . ~50!

We have taken the response of electrons and ions for the
low-frequency mode (v,k), while only the electron response
has been taken into account for the high-frequency modes,
where the ions form only the charge neutralizing back-
ground. Eliminatingf, f1 , andf2 from Eqs.~45!–~47! we
obtain the following expression for the nonlinear dispersion
relation for the low-frequency electrostatic mode (v,k):

e5
m1

e1
1

m2

e2
, ~51!
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where

m15
vpe
2 e2f0*f0

4meTek
2k1

2v1
2~v2vce!

S xek
2k0•k11k0

2
vpe
2

v0
2 k•k1D

3FXe exp~ id!2
meTe~v2vce!

miTi~v2vci!
Xi exp~2 id!G ~52!

and

m25
vpe
2 e2f0*f0

4meTek
2k2

2v2
2~v2vce!

S xek
2k0•k22k0

2
vpe
2

v0
2 k•k2D

3FYe exp~ id!2
meTe~v2vce!

miTi~v2vci!
Yi exp~2 id!G . ~53!

This is the general dispersion relation of any low-frequency
electrostatic mode (v,k) in the presence of an electrostatic
pump wave and the sidebands in a transversely magnetized
plasma. From Eqs.~52! and~53!, we notice that the effect of
ion motion enters into the coupling coefficientsm1 andm2
through the terms containingXi andYi . Forv;vci , the ion
contribution may dominate over that due to motion of elec-
trons.

III. EXPRESSION FOR GROWTH RATE

To obtain the growth rate of the decay process we write
@14,16#

v5v r1 ig,

e5 ig
]e r
]v

1 i e i

5 i ~g1gL!
]e r
]v

, ~54!

where the subscriptr represents a real quantity andgL , the
linear damping rate of the low-frequency mode may be ob-
tained from the relation

gL5
2e i

]e r /]v
. ~55!

Similarly

e15 i ~g1gL1!
]e1r
]v1

, ~56!

e25 i ~g1gL2!
]e2r
]v2

, ~57!

wheregL1 andgL2 are the linear damping rates of the decay
waves (v1 ,k1) and (v2 ,k2).

Thus the growth rate of the four-wave parametric insta-
bility is obtained from

~g1gL!~g1gL1!~g1gL2!

[2
1

]e/]v Fm1~g1gL2!

]e1 /]v1
1

m2~g1gL1!

]e2 /]v2
G , ~58!

whereg is the growth rate in presence of the damping of the
waves. Now the linear dielectric function of the low-
frequency mode (v,k) propagating along thex direction can
be simplified with the approximationsv;vci and
v0 ,v1 ,v2@k0,1,2•v, andd5d15d250 ~when all waves are
considered to be propagating along thex direction!, Eq. ~48!
becomes

e511
2vpe

2

k2y th,e
2 1

2vpi
2

k2y th,i
2 F12

v

v2vci

1

A~2pbi !
G ~59!

and

]e

]v
5

2

Ap

vpi
2vci

2

k3y th,i
3 ~v2vci!

2 . ~60!

Using Eqs.~49!, ~50!, ~52!, ~53!, and ~60! we obtain the
normalized growth rate (g[g0) of the modulational insta-
bility in the absence of the linear damping of all the decay
waves (gL5gL15gL250) as

g0

v
5F uy0 /y th,eu2pk3y th,e

3 y th,i
3 ~v2vci!

2v0
2

8k0vce
2 vpi

2vci
2 ~v2vce!v

2 H k12~v12vce!
2

v1
2 S xek1k0

vpe
2

v0
2 D S A2

meTe~v2vce!

miTi~v2vci!
BD

1
k2
2~v22vce!

2

v2
2 S xek2k0

vpe
2

v0
2 D SC2

meTe~v2vce!

miTi~v2vci!
D D J G1/2, ~61!

where

y0
25

e2k0
2f0*f0

me
2v0

2 , ~62!

A5
mevce

2

2Te~v12vce!
@12I 0~b0e!exp~2b0e!#1

mevce
2

2Te~v02vce!
@12I 0~b1e!exp~2b1e!#, ~63!

B5
mivci

2

2Ti~v12vci!
@12I 0~b0i !exp~2b0i !#1

mivci
2

2Ti~v02vci!
@12I 0~b1i !exp~2b1i !#, ~64!
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C52
mevce

2

2Te~v02vce!
@12I 2~b2e!exp~2b2e!#2

mevce
2

Te~v02vce!
@12I 1~b0e!exp~2b0e!#

1
mevce

2

Te~v22vce!
@12I 0~b0e!exp~2b0e!#, ~65!

D52
mivci

2

2Ti~v02vci!
@12I 2~b2i !exp~2b2i !#1

mivci
2

2Ti~v22vce!
@12I 0~b0i !exp~2b0i !#2

mivci
2

Ti~v02vci!
@12I 1~b0i !exp~2b0i !#.

~66!

Since we are considering all the waves propagating in the
x direction,d5d15d250 andkz5k1z5k2z50. Hence there
is no linear damping of the waves. Consequently, the thresh-
old of the modulational instability of the electrostatic beat
wave is zero. Thus the undamped growth rate given by Eq.
~61! is due only to the nonlinear beating of the pump and the
sidebands. It may be anticipated that the motion of ions to
the undamped growth rate of the modulational instability
@Eq. ~61!# may contribute significantly and even dominate
over the contribution of electron motion forv;vci .

IV. NUMERICAL RESULTS
AND GRAPHICAL REPRESENTATIONS

To have some numerical appreciation of the results of our
theory, we have made calculations for the growth rate of
modulational instability for the following typical plasma
parameters:v1851.96331014 rad sec21, v2851.77831014

rad sec21 ~corresponding to a CO2 laser!, n0
051017 cm23,

Te51 keV, Bs520–200 kG,uy0 /y th,eu51.0, v/vci51.001,
and Te /Ti5100. We have chosen the above set of param-
eters for our calculations, because of their relevance to
plasma beat wave experimental studies. The results of calcu-
lations are presented in the form of graphs in Figs. 1–4.

Figure 1 shows the variation of the normalized growth
rate g0 /v for the modulational instability with electron
plasma temperatureTe . From Fig. 1, we note that modula-

FIG. 1. Variation ofg0 /v with Te for the following parameters:
uy0 /y th,eu51.0, Te51 keV, Te /Ti5100, Bs520 kG,
v051.8531013 rad sec21, v/v ci51.001, andn0

051017 cm23.
CurveA corresponds to the normalized growth rate for the electron
motion only. CurveB corresponds to the normalized growth rate of
the instability when both electron and ion motions are included.

FIG. 2. Variation ofg0 /v with Te /Ti for the following param-
eters:uy0 /y th,eu51.0,Te51 keV, andBs520 kG. The other param-
eters and specifications are the same as in Fig. 1.
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tional instability decreases at low temperature but becomes
more or less independent ofTe for a givenTe /Ti .

Figure 2 shows the variation of the normalized growth
rateg0 /v for the modulational instability of the beat wave
with Te /Ti . It is noticed that the modulational instability
decreases rapidly withTe /Ti only when electron motion is
considered; but with ion motion included, the modulational
instability takes a steady value.

Figure 3 shows the variation of the normalized growth
rate g0 /v of the modulational instability of the beat wave
with external magnetic fieldBs . It follows that the normal-
ized growth rate of the modulational instability decreases
slowly with increasingBs . However, the growth rate is
about two orders higher when ion motion is included.

Figure 4 shows the variation of the growth rateg0 /v with
v/vci . We notice that the growth rate increases with
v/v ci . When ion motion is included, the growth rate of the
instability takes a higher steady value. For unmagnetized
plasmas@16#, the growth rate of the modulational instability
is quite high~in the order of;v pi). But, due to the appli-
cation of the external static magnetic field in the present
investigation, the growth rate of the modulational instability
reduces substantially, on the order of;vci!vpi .

V. DISCUSSION

In this paper, we have studied the modulational instability
of an electrostatic electron plasma wave excited by two elec-

tromagnetic waves in a transversely magnetized plasma. The
transverse static external magnetic field is applied with a
view to phase lock the accelerated particles with the wave;
that is, preventing these particles from outrunning the plasma
beat wave, thereby allowing the particles to gain maximum
energy. The nonlinear response of electrons and ions has
been obtained by solving the full Vlasov equation expressed
in terms of gyrokinetic variables. It is seen from the expres-
sion for the growth rate of the modulational instability@cf.
Eq. ~61!# that the growth rate vanishes whenv5vci because
at the ion cyclotron resonance of the low-frequency mode
(v,k) the wave is totally damped to the ions. For unmagne-
tized plasmas@16#, the growth rate of the modulational in-
stability is quite high~on the order of;vpi). But, due to the
application of the external static magnetic field in the present
investigation, the growth rate of the modulational instability
reduces substantially, on the order of;vci!vpi . The ion
nonlinearity is seen to dominate over the electron nonlinear-
ity for the low-frequency perturbation forv;vci . From the
numerical calculations, we observe that the growth rate of
the modulational instability is about two orders higher when
ion motion is included. We note that the modulational insta-
bility decreases at low temperature but becomes more or less
independent ofTe for a givenTe /Ti . It is also noted that the

FIG. 3. Variation ofg0 /v with the external magnetic fieldBs

for the following parameters:uy0 /y th,eu51.0, Te /Ti5100, and
Te51 keV. The other parameters and specifications are the same as
in Fig. 1. FIG. 4. Variation ofg0 /v with v/vci for the following param-

eters: uy0 /y th,eu51.0, Te /Ti5100, Te51 keV, andBs5200 kG.
The other parameters and specifications are the same as in Fig. 1.
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modulational instability decreases rapidly withTe /Ti only
when electron motion is considered; however, with ion mo-
tion included, the modulational instability takes a steady
value. We also note that the growth rate of the modulational
instability decreases slowly with increasingBs . Therefore,
the application of an external magnetic field in the plasma
beat wave acceleration scheme is also important for sup-

pressing modulational instability which otherwise may de-
stroy the acceleration mechanism@9,14#.

It may be mentioned further that the effect of ion dynam-
ics on other parametric instabilities, such as decay, oscillat-
ing two-steam instabilities, etc. of the longitudinal beat wave
may become important and significant. Work along this line
is in progress.
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